Influence of TiC additions on the oxidation behaviour of Si₃N₄-based ceramics

A. OPSOMMER, E. GOMEZ*, F. CASTRO

Centro de Estudios e Investigaciones Técnicas de Guipuzcoa, P Manuel de Lardizabal 15, 20009 Donostia, Spain *Escuela Universitaria Ingenieria Tecnica Minera (Euskal Herriko Unibertsitntoa, Fisika Saila), Colina de Beurko s/n, Barakaldo (Bizkaia), Spain E-mail: Fcastro@ceit.es

The oxidation behaviour in air of Si₃N₄ ceramics containing Y₂O₃ and Al₂O₃ as sintering aids, with and without a dispersion of TiC particles, has been studied between 1200 and 1400 °C. The influence of TiC additions on the oxidation kinetics is discussed in comparison with the results obtained for the Si₃N₄-Y₂O₃-Al₂O₃ reference material. However, in all cases and within the experimental temperature range, the oxidation kinetics were observed to be of a parabolic type. The microstructure of the oxide scales formed, which has been characterized by scanning and transmission electron microscopy, was observed to depend on the oxidation temperature and the initial composition of the material. © *1998 Chapman & Hall*

1. Introduction

It is well known that the oxidation of non-oxide ceramics has a great influence on their high-temperature properties and may limit their use in structural applications [1, 2]. Composite materials based on Si₃N₄ with additions of TiC, TiN or HfC particles have been developed for use as tools in machining operations and wear resistant components in order to reduce the problems of chemical wear and abrasion [3, 4]. While the oxidation behaviour of either hot isostatically pressed or sintered Si₃N₄ with additions of MgO, other metallic oxides or rare-earth elements has been extensively studied [5-7], relatively little has been reported on the influence of Ti carbides and nitrides on the oxidation process [8, 9]. Those studies describe some characteristics of the oxidation behaviour of Si₃N₄-TiN composites. However, the present work presents a detailed characterization of the microstructural characteristics of the oxide products formed and its relation with the overall oxidation kinetics of Si_3N_4 based ceramics with TiC additions.

2. Experimental procedure

Sintered Si_3N_4 with additions of Y_2O_3 (6 wt%) and Al_2O_3 (1.5 wt%) was used as a baseline material. Composites were formed by adding particles of TiC. Powder mixtures produced by ball milling (48 h) were uniaxially pressed at pressures of 50 MPa to obtain samples with a green density between 54 and 65% of the theoretical density. Samples of 96–97% of the theoretical density were obtained by sintering at 1900 °C under N₂ at 5 bar for 60 min in a furnace with a graphite heating element. A powdered bed consist-

ing of equal proportions of Si_3N_4 and BN was used in all cases during sintering in order to prevent the thermal decomposition of the experimental materials. After polishing the samples to a final finish of 1 µm, they were oxidized in air at atmospheric pressure at temperatures between 1200 and 1400 °C. After oxidation, mass gains per unit area were determined and the structural characteristics of the oxide scales examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). All the electron diffraction patterns were obtained using an accelerating voltage of 100 kV.

3. Results

3.1. Microstructure of the as-sintered materials

The microstructure of the experimental materials with a chemical composition of $Si_3N_4-6wt\%$ $Y_2O_3-1.5wt\%$ Al_2O_3 consists of prismatic grains of β -Si₃N₄ (equivalent diameter of 1.7 µm and aspect ratio of about 5.5) and an (Y-Al-Si)-containing intergranular phase which mostly crystallized as α - $Y_2Si_2O_7$ with small amounts of apatite. Based on XRD data the composition of the β -Si₃N₄ was determined to be Si_{5.92}Al_{0.08}O_{0.08}N_{7.92}, which corresponds to a sialon type of the β '-Si₃N₄ structure.

The composites with TiC exhibited a finer microstructure consisting of β' -Si₃N₄ grains with a mean size of 1.4 µm and an aspect ratio of about 6, TiC_{0.6}N_{0.4} grains with a mean size of 1.2 µm and a (4Y₂O₃-SiO₂-Si₃N₄) (N-YAM) intergranular phase.

Figure 1 SEM image from the surface of the oxide scale after oxidation at 1200 °C.

Figure 2 TEM micrograph and electron diffraction pattern (inset) (L = 405 mm) of γ -Y₂Si₂O₇ precipitates formed at the interface between the sublayers which constitute the oxide scale.

3.2. Structure of the oxide-scales

In the two types of material, several differences in the oxide scales were identified depending on the chemical composition of the materials. As can be seen in Fig. 1, on samples without TiC the surface of the oxide product consisted of cristobalite, Y disilicates, apatite and porosity, which is believed to have been formed during the oxidation of quaternary phases. As reported before [10], at high oxidation temperatures the oxide scales are formed with a layered structure. Basically two main layers were distinguished: the outer layer containing highly textured crystals of Y₂Si₂O₇ and cristobalite embedded in a glassy phase (Fig. 1) and an inner layer next to the substrate where Si_3N_4 and Si_2N_2O coexist. The interface between these layers (Fig. 2) is characterized by the formation of Y₂Si₂O₇ crystals of irregular form and the presence of bubbles which presumably form owing to the release of N₂ or NO from supersaturated glass. From XRD analysis it was noted that after an initial period, which corresponds to the formation of Si₂N₂O as a primary oxidation product, the ratio of the intensities of the 200 and 111 reflections

TABLE I Change in the $I_{1\,1\,1}({\rm Si_2N_2O})/I_{2\,0\,0}({\rm Si_3N_4})$ ratio with time at 1250 $^\circ{\rm C}$

Time (hours)	$I_{111}({\rm Si}_{2}{\rm N}_{2}{\rm O})/I_{200}({\rm Si}_{3}{\rm N}_{4})$	
0	0.015	
1.5	0.03	
2.5	0.042	
17	0.038	
25	0.046	
48	0.042	

Figure 3 STEM image of the outer layer of the oxidation scale formed in materials with 10% TiC additions. A, crystals of SiO₂; B, glassy phase; C, crystals of TiO₂; D, Ti₂Si₂O₇.

of Si_3N_4 and Si_2N_2O , respectively, remains constant, indicating that the thickness of the inner layer does not significatively change with the oxidation time (Table I).

For the material containing additions of TiC particles a layered structure of the oxide scale was also observed after high-temperature oxidation. It is also noteworthy that the oxidation of TiC, to form TiO_2 , was observed to take place at temperatures between 450 and 1100 $^{\circ}$ C. In this case the oxide scale consisted of three sublayers. The outermost layer formed by SiO₂, as cristobalite and keatite, TiO₂ in tetragonal and orthorhombic form and small crystals of Ti₂Y₂O₇ which are formed as a result of the reaction between TiO_2 and Y_2O_3 . All these phases were observed to be embedded in a glassy phase. An example of this layer is shown in the scanning transmission electron microscopy (STEM) image in Fig. 3. TEM images and the corresponding diffraction patterns of some of these phases are shown in Fig. 4. The experimental observation that the concentration of Ti in the two outer layers is much higher than next to the substrate indicates that ions of Ti³⁺, as do those of additive and impurity elements, diffuse outwards during the oxidation process (Table II). In the mid-sublayer, Ti was found to be present as Ti₂Y₂O₇, unreacted TiC crystals and Ti oxides with a valence less than 4. The coexistence of these phases may be understood on thermodynamics grounds, as illustrated in Fig. 5 which shows the fields stability of Si-O-N phases as a function of P_{N_2} and P_{O_2} together with the pressures

110 021 ī11 (C) <u>0.1μm</u>

Figure 4 TEM images and electron diffraction patterns (insets) corresponding to crystals of (a) cristobalite (L = 555 mm), (b) keatite (L = 795 mm) and (c) rutile (L = 795 mm) contained on the surface of the oxide scale.

corresponding to the conversion of TiC in Ti₂O₃ and Ti₂O₃ in rutile for two different P_{CO_2} values. Fig. 6 shows the identification of these phases by electron diffraction. The sublayer next to the substrate had a marked resemblance to the corresponding layer in the material without TiC additions.

3.3. Kinetics

In the experimental range of oxidation temperatures the kinetics are parabolic as shown by the typical plot

TABLE II Chemical composition of the oxide layers on a composite with TiC: composition of the material before oxidation, Si_3N_4-6 wt% $Y_2O_3-1.5$ wt% Al_2O_3-2 wt% TiC; oxidation conditions, 1200 °C, 72 h

Element concentration in the oxide layers (wt%)	before oxidation
	(wt%)

	Outer sublayer	Inner sublayer		
Al	1.2 ± 0.2	0.1 ± 0.2	1.3	
Si	51.4 ± 0.5	72.6 ± 1.9	83.1	
Y	9.1 ± 0.2	18.5 ± 1.8	2	
Ti	38.4 ± 0.6	7.8 ± 0.6	13.5	

Figure 5 Stability diagram of Si compounds and conditions for the conversion of TiC and Ti_2O_3 into TiO_2 .

of the mass gain per unit area versus time shown in Fig. 7. The figure shows a rapid initial mass gain followed by a much lower secondary stage. Fig. 8 summarizes the experimental data obtained up to an oxidation temperature of 1400 °C. This data was used to obtain the temperature dependence of the reaction constants, which is shown in Fig. 9. From this plot an apparent activation energy of 460 kJ mol⁻¹ for the reference material (Si₃N₄-6 wt Y₂O₃-1.5 wt% Al₂O₃) was obtained. This value adequately compares with previously reported data based upon metallic cation migration as the controlling mechanism for the oxidation process. [11, 12].

As seen in Fig. 10, in spite of the addition of TiC the apparent activation energy for the oxidation process in the composite material does not significantly change and the measured values $(450-460 \text{ kJ mol}^{-1})$ are comparable with those reported by others for composites containing TiN additions [9].

4. Discussion

As demonstrated by the TEM work carried out on thin foils of the oxide scales formed in the two experimental

Figure 6 TEM images and electron diffraction patterns (L = 555 mm) of phases present in the inner layer of the oxide scale: (a) TEM image of Ti₂Y₂O₇ with corresponding electron diffraction patern (inset) and (b) TiC, (labelled A) and TiO₂ (labelled B) with corresponding electron diffraction patterns of A and B.

materials, it is clear that such oxide scales change, in both chemical composition and microstructure from the reaction interface, in contact with the substrate, to their surface in contact with air. From these analyses it is apparent that at least two sublayers, formed within the oxide scale, are the constituents of the oxide scale as a whole. The basic difference between the oxide scales formed in each material obviously depends on the original chemical compositions of their substrates. It must be emphasized, however, that the introduction of TiC into the reference material does not seem to have a strong effect on the overall kinetics of oxidation, which are essentially governed by the formation of a passivating oxide layer, thus resulting in a parabolic type of kinetics in all the experimental temperature range. Nonetheless, at the same oxidation temperature, samples containing TiC exhibited larger

Figure 7 Mass gain per unit area versus time for all the oxidation temperatures used in this work for the base material. (\blacklozenge), 1400 °C; (\blacksquare), 1350 °C; (\blacktriangle), 1300 °C; (\bigstar), 1250 °C.

Figure 8 Parabolic relationship between mass gain and time during oxidation of the base material. (\blacklozenge), 1400 °C; (\Box), 1350 °C; (\blacktriangle), 1300 °C; (\bigcirc), 1250 °C; (\blacksquare), 1200 °C.

mass gains as can be appreciated by the plot in Fig. 11. It is also noteworthy that, according to the results shown in Fig. 10, the activation energy for the oxidation process is essentially the same to a good degree of approximation for all the experimental materials, despite their TiC content.

The observations of the internal formation of a layer with Si_3N_4 and Si_2N_2O in the reference material can be explained on the basis of the model proposed by Clarke [13] for internal oxidation, as presented schematically in Fig. 12.

The outer cover forms by the conversion of Si_3N_4 and Si_2N_2O into SiO_2 and its rate of formation depends on the diffusion of oxygen through the forming layer of SiO_2 . Neglecting the changes in thickness due to the crystallization of Y compounds, the growth rate of this layer will be given by

$$\frac{\mathrm{d}x}{\mathrm{d}t} \approx \frac{D_{\mathrm{O}_2}(P_{\mathrm{O}_2(\mathrm{atm})} - P_{\mathrm{O}_2(l_2)})}{\mathrm{d}x}$$

Figure 9 Arrhenius plot of the parabolic oxidation rate constant as a function of absolute temperature for the base material.

Figure 10 Comparison between the activation energy for oxidation of Si_3N_4 - Y_2O_3 - Al_2O_3 with and without additions of TiC particles. (\blacklozenge), 0 wt% TiC; (\blacksquare), 2 wt% TiC; (\blacktriangle), 10 wt% TiC.

The formation of a modified substrate layer (layer 2) due to the outward diffusion of N^{3-} and Y^{3+} results in a recession of interface I_3 with a velocity given by

$$\frac{\mathrm{d}y}{\mathrm{d}t} \approx \frac{D^* [P_{\mathrm{N}}(\mathrm{I}_3) - P_{\mathrm{N}}(\mathrm{I}_2)]}{\mathrm{d}y}$$

 D^* being the effective diffusion coefficient for Y^{3^+} and N^{3^-} . The thickness of the layer consisting of Si₃N₄ and Si₂N₂O is governed by the rate of formation of such layer at interface I₃ and its consumption at interface I₂. The fact that the thickness of this layer in certain conditions (1200 °C) does not vary significantly with time indicates that $dx/dt \approx dy/dt$, which implies that the diffusion of N³⁻ and Y³⁺ represents a slow process with a rate comparable with that of oxygen diffusion. In contrast, in previously reported work [14] the oxidation behaviour of the reference material at a high temperature (1400 °C) was observed

Figure 11 Influence of TiC additions on the mass gain per unit area at an oxidation temperature of $1200 \,^{\circ}$ C. (\bigcirc), $0 \, \text{wt}\%$ TiC; (\blacksquare), $2 \, \text{wt}\%$ TiC.

Figure 12 Schematic representation of the development of the sublayers within the oxide scale.

to proceed with the development of larger amounts of Si_2N_2O in the subscale as the oxidation time increased. This is expected considering the fact that the temperature dependence for the diffusion of $Y^{3+}-N^{3-}$ is higher that that for oxygen diffusion (higher value for the activation energy). Consequently, the diffusion of $Y^{3+}-N^{3-}$ increases more rapidly with increasing temperature than does the oxygen diffusion. In these conditions the velocity with which the interface I_3 recedes exceeds that of interface I_2 and a modified layer of increasing thickness results.

Another observation in the present work which shows that the diffusion of N^{3-} (and hence associated Y^{3+}) is a slow process is the development of N_2 bubbles near to interface I_2 which form as nitrogen from the reaction $N^{3-} + O_2 \rightarrow N_2 + O^{2-}$ is liberated. The oxygen ions formed in this way combine with Y^{3+} and SiO₂, resulting in the kind of $Y_2Si_2O_7$ precipitate shown in Fig. 2.

In order to interpret the results observed for the materials with TiC additions, it is important to consider that TiC seems to be a readily oxidizable species on the experimental oxidation conditions. From this point of view the larger mass gain observed in this material could be associated with the conversion of TiC into TiO₂ in addition to the formation of SiO_2 and Si₂N₂O from the reaction between Si₃N₄ and oxygen. Since the activation energies are apparently the same for both materials, it could be thought that oxygen diffusion through the oxide scale is the controlling mechanism for the oxidation process. It is also possible that the larger mass gain observed for the TiC-containing materials arises because a more oxygen-permeable oxide scale is formed as a consequence of the incorporation of Ti³⁺ as a modifier in its glassy structure. The fact that TiC exists in the lower part of the oxide scale may be attributed to the fact that, at the TiC-SiO₂ interface, important partial pressures of CO or CO₂ develop which may inhibit the further conversion of TiC into TiO₂. This shows that, as for the Si₃N₄ matrix, the oxidation of TiC may be considered as a process of mixed kinetics, determined by outward diffusion of $CO-CO_2$ and incoming O_2 .

5. Conclusions

Si₃N₄-based materials containing additions of Y_2O_3 and Al₂O₃ show parabolic oxidation kinetics with an apparent activation energy of 460 kJ mol⁻¹, which suggests that the migration of metallic cations to the reaction interface is the controlling mechanism for the oxidation process.

The larger mass gains observed in the samples containing TiC additions seem to be associated with the formation of TiO₂ and with the lower viscosity of the glassy silicate due to the presence of Ti³⁺ cations. The oxide scale formed in these compositions consists of an outer layer constituted by a glassy phase with dispersed crystals of TiO₂, SiO₂ and Ti₂Y₂O₇, and an inner sublayer in which Ti₂Y₂O₇, SiO₂, Ti₂O₃ and unreacted TiC were detected. The presence of unreacted TiC in the inner part of the oxidation scale suggests that the diffusion of CO or CO_2 may make a contribution to the oxidation rate of the TiC phase.

References

- 1. C. CM. WU, K. R. MCKINNEY, R. W. RICE, W. C. MCDONOUGH, and S. W. FREIMAN, J. Mater. Sci. 16 (1981) 3099.
- 2. R. K. GOVILA, *ibid.* 22 (1987) 1193.
- 3. J. GURLAND, Int. Mater. Rev. 33 (1988) 151.
- 4. S. T. BULJAN, and S. F. WAYNE, *Adv. Ceram. Mater.* **2** (1987) 813.
- 5. F. CASTRO, J. ECHEBERRIA, and M. FUENTES, J. Mater. Sci. Lett. 11 (1992) 101.
- F. A. COSTA-OLIVERA, R. J. FORDHAM and J. H. W. DE WIT, Third European Ceramics Society Conference Vol. 3. (P. Duran and J. F. Fernandez (Eds.) Faenza Editrice Iberica, S.L., Madrid, Spain, 1993) p. 973.
- 7. C.-H. YEH and M.-H. HON, Ceram. Int. 21 (1995) 181.
- F. PENI, J. CRAMPON, and R.DUCLOS, Third European Ceramic Society Conference, Vol. 3 (P. Duren and J. F. Fernandez (Eds.) Faenza Editrice Iberica, S.L. Madrid, Spain, 1993) p. 979.
- 9. S. T. BELLOSI, A. TAMPIERI, and Y. ZHEN LIU, *Mater. Sci. Engng* A127 (1990) 115.
- J. ECHEBERRÍA and F. CASTRO, in Proceedings of the First European Ceramic Society Conference, Vol. 3, Maastricht, 1989, (G. de With, R.A. Terpstra and Metselaar (eds.) Elsevier Applied Science, London, England, 1989) p. 527.
- 11. D. CUBICCIOTI, and K. H. LAU, J. Amer. Ceram. Soc. 61 (1978) 512.
- 12. G. N. BABINI, A BELLOSI and P. VINCENZINI, J. Mater. Sci. 19 (1984) 1029.
- D. R. CLARKE, in "Progress in nitrogen ceramics," edited by F. L. Riley (Martinus Nijhoff, Boston, MA, 1983), p. 421.
- 14. J. ECHEBERRÍA and F. CASTRO, in "Structural ceramics, processing, microstructure and properties", edited by J. J. Bentzen, J. B. Bilde-Sorensen, N. Christiansen, A. Horsewell and B. Ralph. Proceedings of the 11th Risø International Symposium on Metallurgy and Materials Science (Risø National Laboratory, Risø, Roskilde, Denmark 1990) p. 249.

Received 9 June 1997 and accepted 5 February 1998